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INTRODUCTION 

HEAT TRANSFER from heated cylinders is encountered in 
various applications, such as heat exchangers, cooling 
systems and electronic equipment. The buoyancy force 
induced by the heated surface affects considerably the heat 
transfer rate by either assisting or opposing the forced flow. 
This effect becomes particularly significant when the flow 
velocities are relatively low and the temperature difference 
between the surface and the free stream is high. The problem 
of mixed convection along vertical cylinders and needles has 
not been studied as extensively as the flat plate case. The 
results that have been reported for mixed convection along 
vertical cylinders do not include the case of variable heat flux 
at the surface. 

The effect of buoyancy forces on forced convection along 
vertical cylinders was first analyzed by Chen and Mucoglu 
[1,2]. They utilized the local nonsimilarity method to obtain 
solutions for the cases of uniform wall temperature (UWT) 
and uniform surface heat flux (UHF). Their results were 
restricted to a surface curvature parameter, defined as 
Ar = 2(x/r,)Re;“‘, from 0 to 8 and for Prandtl numbers of 
0.7 and 7. Bui and Cebeci [3] solved the same problem using 
a finite-difference technique and presented results for the 
UWT case, for Prandtl numbers of 0.1, 1 .O and 10, and for 
curvature parameter Ar of up to 10. Later, S. L. Lee et al. 
[4,5] extended the previous investigations of mixed con- 
vection along slender vertical cylinders to cover the entire 
regime, from pure forced convection to pure free convection, 
and presented results for a higher range of surface curvature 
parameter, 0 < A < 50, where A = 2(x/r,,)(ReJ”+ Gr.i’4)-’ 
for the UWT case and A = 2(x/ro)(Re:“+Gr:“‘)-’ for the 
UHF case. They employed the weighted finite-difference 
method of solution [6] and their numerical results deviated 
from the ones reported by Bui and Cebeci, especially at large 
curvature parameters. This deviation was attributed to the 
inaccuracy from the use of the central finite-difference 
method of solution by Bui and Cebeci [3], which has difficulty 
handling the governing system of equations as they become 
‘stiff’ when values of the surface curvature and Prandtl num- 
bers become large. 

Recently, H. R. Lee ef al. [7] also employed the weighted 
finite-difference method to analyze natural convection along 
vertical cylinders for the case of power-law variation in the 
wall temperature, r, = T, + ax”. They found that the pre- 
vious results of S. L. Lee et al. [4] were not accurate for a 
curvature parameter A, greater than 10, where 
AN = 2(x/r,,)Gr, . “4 This inaccuracy is attributed to the 
improper choice of step size in the radial direction q. More 
recently, Heckel et al. [8] extended the work of H. R. Lee et 
al. [7] to the case of power-law variation in the surface heat 
flux, y,.,(x) = a.~“. A smaller step size and a larger value of 

fin were again used to obtain accurate results for the Nusselt 
number at high values of the curvature parameter. Heckel et 
al. [9] also analyzed the problem of mixed convection along 
slender vertical cylinders with a power-law variation in the 
wall temperature for the entire regime ranging from pure 
forced convection to pure free convection. Nusselt number 
results for higher values of the surface curvature were 
reported. 

The present study is a supplement to the work of Heckel 
et al. [9] and deals with mixed convection along slender 
vertical cylinders for the case of variable surface heat flux 
q,(x) = ax”. No analytical results for this problem have been 
reported for the entire mixed convection regime except for 
the case of uniform surface heat flux (UHF, n = 0) [5]. The 
Nusselt number results are correlated using the correlation 
equation proposed by Churchill [lo], N# = Nu”,+Nr&‘, 
where NuN is the local Nusselt number for pure free con- 
vection and Nur the local Nusselt number for pure forced 
convection. 

ANALYSIS 

Consider a long vertical cylinder of radius r0 that is aligned 
parallel to a uniform, laminar free stream with velocity u, 
and temperature T,. The surface of the cylinder is main- 
tained at a variable heat flux q,(x). Let u and v represent the 
velocity components in the axial (x) and radial (r) directions, 
respectively, and T the fluid temperature. The conservation 
equations for the problem can be written as 

The boundary conditions are 

u(x, ra) = v(x, rO) = 0, 

u(x, co) = u,,, T(x, cc) = T, 

u(0, r) = u,, T(0, r) = T,, for r > rn. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

In the above equations, a laminar boundary layer flow 
is assumed along with the Boussinesq approximation. The 
positive and negative signs in equation (2) correspond to 
upward and downward forced flows, respectively. In writing 
equation (6) the flow and the boundary layer thicknesses are 
assumed to be zero at the leading edge of the cylinder. 
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The governing equations ( I )-(6) are lirst transformed into 
a dimensionless form by introducing the following dimen- 
sionless variables : 

(r’-re) n = -.___-__(&;~‘+Gr,*’ ‘), 
3 _r,,.Y 

Re, =y. (10) 

In equation (8). $(x, r) is the stream function that satisfies the 
continuity equation, with u = (l@/ar)/r and zj = - (@//3x)/r. 
The buoyancy parameter a., varies from zero to infinity. The 
limiting case of R, = m corresponds to pure free convection 
along a vertical cylinder (Us, = 0) and mixed convection 
along a vertical flat plate (rO = co). The case of C& = 0 cor- 
responds to pure forced convection. The mixed convection 
parameter x varies from zero for pure free convection to one 
For pure forced convection. 

The transfo~ation yields 

.f-ff. 0) =f’(5,0) = 0, W(LO) = - I 

f’(5, co) = x2, U(L =3) = 0 

where A is the curvature parameter defined as 

(13) and the average Nusselt number is obtained from the 
expression 

A = 2~(Re.~‘2+Gr:1i)-’ (14) 

and 

.y dq, 
;‘=G=. 

(15) 

For the case of power-law variation in surface heat flux, 
q,(x) = ax”, one has 

‘J = if. (16) 

The x-dependent parameter x(x) and h(x) can be related 
to the x-dependent t(x) parameter such that 

A zz 2t2x, x zz [1+Q,~‘h+4”“J]-~-’ (17) 

where 

Q,, = [Gr$/Re’-“1”’ ” (18) 

with Gr$ = g~q,,.(ro)r~/kv2 and Re, = u,r,/v as before. 
Equations (11) and (12) can be rewritten in a genera1 form 

as 

Nu,/(Re:” +GrZ’!‘) = 4~~_(;’ 

where CL = e at x = L. The local friction factor is obtained 
from the definition CFX = z,/(pu,$/2), with r, = p(&/&), 
This gives 

C,R~Z”~ = 2~-~_$-“(5,0). X (25) 

The expression for the average friction factor is given by 

;r;r&,,l --85;’ ‘L -3 11 
I 
o x f (5,WdC. (26) 

The axial velocity distribution can be written as u/u,, = 
f’(t, n)/x’ and the temperature profile is given by 

O(L I?) = (T- T,)(Re:‘2 + Gr.~“s)lMx)xlkl 

or by 

(l~a,vi)f+a,f”+az~jr”+a,f”+a,H METHOD OF SOtUTlON 

where 

~1~ = -J(l-x)(%+3). a, = +(1-x)‘. tilr = -</4, 

ab = -7ii[5-(I--;1)(2n+3)+lOn]. (21) 

With A and x related to t and a,, the functions~and 0 in 
equations (1 I) and (12) or equations (19) and (20) are func- 
tions of (5,~) and depend on three constant parameters, n, 
Pr and 0,. One can then obtain solutions of equations (19) 
and (20) subject to boundary conditions (13) for all three 
cases, vertical cylinders in mixed convection (a,, + 0. 
Q, = finite). vertical cylinders in pure free convection 
(a, = 0, Q, = CC), and vertical flat plates (rO + W) in mixed 
convection (a, = CC, A = 0). The case of pure free con- 
vection along vertical cylinders has already been studied in 
details by Heckel et al. [8]. The limiting case of r0 = cr, for a 
flat plate with variable surface heat flux is solved in this 
particular study for comparison purposes. For the flat plate 
case,fand fI become functions of (x, q) and equations (19) 
and (20) along with boundary conditions (13) still apply 
except that for this case 4 is replaced with x and 

(22) 

withy = r-To. 
The physical quantities of interest include the local and 

average Nusselt numbers, the local and average friction fac- 
tors, the axial velocity distribution, and the temperature 
profile. 

The local Nusselt number is defined by 
Nu, = [qJ(r,- T,)](x/k), which can be expressed as 

(23) 

(24) 

Equations (II)-(13) or (19), (20), and (13) constitute a 
system ofnon-linear partial differential equations in the (&q) 
coordinates with parameters Pr, n and R,. The major steps 
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Table 1. The Nu, Re; “* and f”([, 0) results for power-law variation in surface heat flux, forced convection 

Pr = 0.1 Pr = 0.7 Pr = 7 Pr = 100 
n n 

5 -0.4 : 0.5 -0.4 ;f 0.5 -0.4 0 0.5 -0.4 0 0.5 f”(5,O) 

0 0.1550 0.2007 0.2410 0.3209 0.4059 0.4803 0.7056 0.8856 1.0436 1.7165 2.1522 2.5349 0.3321 
0.5 0.2470 0.3062 0.3562 0.4345 0.5385 0.6274 0.8662 1.0786 1.2627 1.9974 2.5014 2.9415 0.4797 
1.0 0.4761 0.5585 0.6256 0.7044 0.8457 0.9620 1.2268 1.4997 1.7308 2.5690 3.1927 3.7308 0.8064 
1.5 0.8297 0.9192 0.9979 1.0765 1.2617 1.4099 1.7075 2.0489 2.3316 3.2743 4.0257 4.6653 1.2387 
2.0 1.3320 1.4078 1.4831 1.5381 1.7686 1.9506 2.2864 2.7013 3.0387 4.0866 4.9692 5.7110 1.7580 
2.5 1.9509 2.0128 2.0806 2.0841 2.3670 2.5814 2.9555 3.4488 3.8441 5.0015 6.0199 6.8660 2.3579 
3.0 2.6706 2.7235 2.7847 2.7154 3.0415 3.2952 3.7091 4.2853 4.7414 6.0142 7.1728 8.1253 3.0406 
3.5 3.4880 3.5357 3.5920 3.4619 3.8042 4.0844 4.5422 5.2056 5.7254 7.1184 8.4211 9.4821 3.8166 
4.0 4.4055 44496 4.5023 4.3357 4.6778 4.9717 5.4587 6.2152 6.8028 8.3214 9.7763 10.951 4.6973 
4.5 5.4269 5.4684 5.5185 5.3364 5.6671 5.9683 6.4635 7.3201 7.9805 9.6329 11.249 12.545 5.6908 
5.0 6.5597 6.5993 6.6474 6.4614 6.7763 7.0800 7.5611 8.5258 9.2646 11.056 12.847 14.271 6.8041 

necessary to solve the non-linear system of equations are as 
follows. First, these equations are transformed into quasi- 
linear ordinary differential equations and are cast into a 
finite-difference form by making use of the weighting factors 
[6]. The resulting system of algebraic equations is next written 
in a matrix form that can be solved by the Gaussian elim- 
ination method with high accuracy. The solutions provide 
values for f, f’ and 8, and the cubic spline technique is used 
to obtain the values off”(t, 0) and e’(<, 0). A solution was 
considered to be convergent when the calculated values for 
h f’ and tJ between two successive iterations differed by less 
than 10e4. 

The numerical solution was found to be very sensitive to 
the step size Aq and the choice of qm. A step size of A1 = 0.01 
and qrn values of up to 45 were used for all numerical cal- 
culations. These values were found to be sulhcient for pro- 
viding accurate results. A further decrease in Aq or increase 
in qrn did not significantly affect the local Nusselt number 
results. In addition, it was found that the solution was not 
sensitive to the step size for A< and At = 0.1 was used. 

RESULTS AND DISCUSSION 

Numerical results were obtained for fluids with Prandtl 
numbers of 0.1, 0.7, 7 and 100, with the exponent n varying 
in the range -0.4 < n < 0.5, and for values of the buoyancy 
parameter R, of 0,0.02,0.1,0.5, 1, 2 and co. The limiting case 
of 0, = 0 corresponds to pure forced convection along a 
vertical cylinder. The case of Q, = cc corresponds to either 
mixed convection along a vertical flat plate (r,, = co) or to 
pure free convection (u, = 0) along a vertical cylinder. The 
latter case has been studied in detail by Heckel et al. [8] and 
their results were used in this present study for developing 
the correlation equations. 

The local Nusselt number results Nu, Re;“’ for pure 
forced convection (x = 1) are listed in Table 1. It can be seen 
from the table that the local Nusselt number increases with 
increasing Pr and n. Also, the local Nusselt number increases 
with increasing curvature (in terms of l) and seems to con- 
verge to an asymptotic value for high values of the curvature 
parameter AF = 2r2. This can be noticed from Fig. 1 which 
shows the local Nusselt number Nu, Re; ‘I* as a function of 
5. The curves for all Pr merge together for high values of 
curvature Ar. The results of S. L. Lee et al. [5] for the UHF 
case. are in agreement with the present results for small values 
ofthe curvature parameter Ar, but both sets of results deviate 
from each other for large values of Ar. For instance, for the 
case of Pr = 0.7 and n = 0 (UHF) the value of 
Nu, Re.;‘j2 was found to be 6.77 for AF = 50 (5 = 5) as 
compared to 16.5 as reported by S. L. Lee et al. [5]. The 
results forf”(t,O) are also included in Table 1. For the pure 
forced convection case, f”( <, 0) is independent of Pr and n 
since for this case the energy equation is not coupled with 
the momentum equation. 

Figure 2 demonstrates the effect of surface curvature par- 
ameter A, on the local Nusselt number. As the figure illus- 
trates, the local Nusselt number ratio NuJNu,,, where NM,,, 
is the local Nusselt number for a vertical plate (AF = 0), 
increases from 1 at A, = 0 and is more sensitive to A, for 
lower Prandtl numbers. To conserve space, results for the 
average Nusselt number NUT and for the N~,/Nu,,~nr ratio 
are not shown. The ratio NuX/Nux,cHF tends to 1.0 for high 
curvature values, which indicates that the Nusselt number 
becomes independent of n as the curvature increases. 

Numerical results for mixed convection are presented next. 
Table 2 presents the results for the local Nusselt number 
Nu,/(Re.?2 + Gr, * I”) for the limiting case of mixed convection 
over a vertical flat plate (A = 0 and R, = cc). The local 

5= &/2]‘R 
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20 - 

0 10 20 . 30 40 50 
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FIG. 1. Nu, Re; “I vs 5 for pure forced convection, UHF. FIG. 2. Nu,/Nu,,, vs Ar for pure forced convection, UHF. 



x 

2. The Nu,JKe, ’ ‘+ Gr:’ ‘) results for power-law variation in surface heat flux. mixed convection along a vertical 
flat plate (A = 0, 12, = x3) 

-~.----ll_ _~” _____I __“.____“._---~.--_ “_..____ .--.___.. 

Pr = 0.1 PI = 0.7 PI z? 7 fr = 100 

-0.4 ;f 
t* )I 

0.5 -0.4 ;I 0.5 -0.4 0 0.5 -0.4 0 0.5 

0 0.2115 0‘2635 0.3053 0.3975 0.4834 0.5517 0.7291 0.8699 0.9816 1.3I34 1 s.564 
0.1 0.1906 0.2374 0.272 I 0.3583 0.4357 0.4972 0.6572’ 0.7841 0.8849 1.1841 1.4034 
0.2 0.1704 0.2122 0.2457 0.3206 0.3897 0.4446 0.5880 0.7017 0.7912 1.0629 f .260& 
0.3 0.1513 0.1882 0.2178 0‘2851 0.3463 0.3948 0.5240 0.6255 0.7066 0.9616 1.1435 
0.4 0.1338 0.1664 0.1925 0.253 1 0.3072 0.3515 0.4699 0.5625 0.6411 0.9015 1.0830 
OS 0.1192 0.1485 0.1743 0.2275 0.2784 0.3237 0.4360 0.5322 0.6229 0.9177 1.1416 
0.6 0.1102 0.1413 0.1696 0.2168 0.2745 0.325 I 0.4459 0.5679 0.6764 1.0388 1.3407 
0.7 0.1144 0.1504 0.1815 0.2356 0.3021 0.3588 0.5126 0.6538 0.7744 t .2406 1.5834 
0.8 0.1302 0.1697 0.2041 0.2700 0.343 1 0.4066 0.5935 0.7482 0.8829 1.4431 1.8177 
0.9 0.1432 0.1856 0.2230 0.2965 0.3754 0.4444 0.6521 0.8190 0.9655 1.5862 1.9903 
I.0 0.1550 0.2007 0.2410 0.3209 0.4059 0.4803 0.7056 0.8856 1.0436 I.7165 2.1522 

Nusselt number results as a function of x for the UHF (n = 0) 
case are illustrated in Figs. 3 and 4, respectively for Pr = 0.7 
and 7.0. These figures cover the entire regime of mixed con- 
vection (0 < 2 c 1) with 8, and A as parameters. Curves 
with constant values of A are also presented by dashed lines 
in the figures. The curves for Q, = 0 are for pure forced 
convection and the curves for iz, = K: cover both mixed 
convection along a vertical flat piate (rO = co and A = 0) and 
pure free convection (u, = 0 and x = 0) along a vertical 
cylinder. It can be seen from Figs. 3 and 4 how the local 
Nusselt number varies with x for different values of Q, and 
A. One can notice that for high values of Q, the Nusselt 
number parameter Nu,/(Re~!‘+ Gr:‘j5) decreases from x = I 
(pure forced convection) to reach a minimum value near 
x = 0.55 and then increases toward ‘x. = 0 (pure free con- 
vection). However. this is not the behavior for the local 

lo-‘0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
X 

FE. 3. ~i~,~(R~~.~+G~~‘~~ ) vs x for mixed ~onv~ti~n, 
Pr = 0.7. UHF. 

FIG. 

“‘0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
X 

4. ~u,~(Re~,~~Gr~“‘) vs x for mixed convection. FOG. 5. Nu,/(Re~‘-‘-kGr:‘;5) vs x for mixed convection, 
Pr = 7, UHF. Pr = 0.7, A = 0 (flat plate). 

1.7493 
1.5775 
1.4180 
1.2910 
I.2490 
I .3687 
t .6085 
I .X762 
2.1440 
2.345 I 
2.5349 

Nusselt number Nu,. For example, for x = 0.6 and 
Re’!’ = 100, one has Gr:“* = 66.67 from equation (9). Next, 
frlrn Table 2 one finds For the case of Pr = 0.7 and n = 0, 
Nu Gr*-“” = 0.4834 for pure free convection (x = 0), 
Nu’ Re”” = 0.4059 for pure forced convection (x. = 1). and 
Nu~(R~~” +Gr;) ‘j5)- ’ = 0.2745 for mixed convection with 
x = 0.6. The corresponding local Nusselt numbers Nu, for 
free convection, forced convection, and mixed convection 
are, respectively, 32.23,40.59 and 45.75. This trend in the MA, 
values for the three convection regimes agrees with physical 
reasoning. 

The effect of the exponent n or, the local Nusselt number 
is illustrated in Fig. 5. The flat plate case with Pr = 0.7 is 
shown in the figure as an example. It is seen from the figure 
that the local Nusselt number increases with increasing n and 
that all curves approximately follow the same pattern as the 
UHF case (n = 0). 

Results forf‘“(& 0) and the average Nusselt number results 
~~~~(R~~2 + Gr; I”) were also obtained for the mixed con- 
vection case, but they are not included to conserve space. 
The general trend for y(&O) results is that it decreases 
with increasing Prandtl number and increasing n, which IS 
opposite to the Nusselt number behavior. The average Nus- 
selt number results exhibit a similar behavior as the local 
Nusselt number. 

For practical purposes, the local and average Nusselt num- 
ber results for pure forced convection within the ranges 
0.1 < Pr < 100 and -0.4 6 n < 0.5 have been correlated by 
the foliowing expressions : 

Nu, Re; ‘.’ = ‘XF.rPr)[AF(A,+,~,,r{~~~A](l t Vr W,) (27) 

where 

r,(Pr) = 0.464Pr’ ‘[l f(0.0207/Pr)“3] “’ G-3) 

0.6 
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As(A) = l+o.31A”Z (29) 

f,,r(Pr) = 0.015+0.24Pr-0~3s (30) 

VF = n{[0.44+5.0 exp (-6.0Pr”‘0)]-0.18n} (31) 

IV, = exp [-(0.06+0.1Pr-0~‘)A3’5]. (32) 

The corresponding expression for the average Nusselt num- 
ber is 

& Re, “’ = 2~F(P~)[BF(A)+fZ,F(PT)A](1 f ps) (33) 

where 

&(A) = 1 +O.l9A”* (34) 

fZ,r(Pr) = 0.012+0.12Pr-038 (35) 

pr = V, exp [ - (O.O8Pr- ‘~5)Apl.70]. (36) 

The form of the above correlation equations is similar to 
the one proposed by Heckel ef al. [9]. Their form was based 
on the flat plate solution and the nearly linear relationship 
between the Nusselt number and the curvature. On the other 
hand, the correlations of S. L. Lee et al. [S] were derived 
based on the asymptotic solution as A + cc. The maximum 
error in equations (27) and (33) is less than 7.3% for the 
UHF case and increases to 10.1% for the variable heat flux 
case with -0.4 < n Q 0.5. The maximum error occurs at 
Pr=O.landn= -0.4. 

In the entire mixed convection regime 0 d x < 1, the cor- 
relation equations for Nusselt numbers can be presented in 
the form as proposed by Churchill [IO) 

(Nu/Nu,)~ = 1-b (Nu~/Nu~)~. (37) 

This form of correlation is based on pure forced and pure 
free convection results for a vertical flat plate. In terms of 
the buoyancy parameter x the corresponding correlation 
equation can be represented by 

Nu,/(Rej’* +Gr$1’5) = {[;I(Nu, Re;“*)y 

+[(I -~)(Ns_~ Gr,*-“5)]m}‘@‘. (38) 

A correlation equation based on the graphical technique 
of Churchill was developed for the exponent m in terms of 
the curvature A and Pr as 

m = 1 + 2 exp [ - (0.75 + 0.40Pr-“~4)Ao 3]. (39) 

It is noted that the form of equation (39) is such that m 
tends to 3 for zero curvature (A = 0) which has been proven 
theoretically and experimentally to give good accuracy for 
the vertical flat plate case [l&12]. As A tends to infinity m 
decreases to 1. This can be explained by the Nusselt number 
being nearly independent of the buoyancy parameter x for 
large A values. The Nusselt number calculations for pure 
free convection iVtlN and pure forced convection Nur, which 
are used in equation (38), are based on A. They are calculated 
from the endpoints of the curves in the Nusselt number 
figures at x = 0 and 1 for lines of constant A for given Pr 
and n. The maximum error in equation (38) was found to be 
less than 5% for the flat plate case with m = 3. For A > 0, 
equation (38) along with the m expression produces a 
maximum error of 8% when interpolating from the cal- 
culated NuN and NuF values. Similar to what has been 
reported by Heckel et al. [9], the correlation gives good 
results only for n 2 0, and it is inconsistent for n < 0. 

CONCLUSIONS 

Mixed convection in laminar boundary layer flow along 
slender vertical cylinders is studied for power-law variation 
in surface heat flux. Numerical results are obtained for 
the entire mixed convection regime (0 < x d 1) and local 
Nusselt number parameter in terms of Nux/(Re:‘*+ Gr,* ‘I’) 
are presented for 0.1 < Pr < 100 and 0 < A Q 50, with 
-0.4 < n < 0.5. Correlation equations for the local Nusselt 
number are also included. The Nusselt number and hence the 
local heat transfer rate are found to increase with increasing 
Prandtl number, increasing curvature, and increasing value 
of the exponent n. For the vertical flat plate case (A = 0) the 
local Nusselt number parameter initially decreases and then 
increases as x varies between 1 and 0. As the curvature is 
increased, the local Nusselt number parameter becomes 
nearly independent of the mixed convection parameter x and 
the constant A curves appear almost as straight lines. Results 
for the average Nusselt number %;,/(ReL”+Gr: I’“) and 
f”(& 0) are also discussed. 
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